首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5750篇
  免费   137篇
  国内免费   7篇
工业技术   5894篇
  2021年   53篇
  2020年   39篇
  2019年   53篇
  2018年   53篇
  2017年   56篇
  2016年   78篇
  2015年   64篇
  2014年   107篇
  2013年   312篇
  2012年   169篇
  2011年   216篇
  2010年   184篇
  2009年   214篇
  2008年   247篇
  2007年   239篇
  2006年   214篇
  2005年   168篇
  2004年   156篇
  2003年   139篇
  2002年   144篇
  2001年   117篇
  2000年   112篇
  1999年   115篇
  1998年   197篇
  1997年   159篇
  1996年   121篇
  1995年   111篇
  1994年   109篇
  1993年   120篇
  1992年   111篇
  1991年   54篇
  1990年   92篇
  1989年   84篇
  1988年   79篇
  1987年   92篇
  1986年   81篇
  1985年   109篇
  1984年   95篇
  1983年   102篇
  1982年   100篇
  1981年   90篇
  1980年   59篇
  1979年   71篇
  1978年   68篇
  1977年   78篇
  1976年   81篇
  1975年   71篇
  1974年   46篇
  1973年   47篇
  1972年   37篇
排序方式: 共有5894条查询结果,搜索用时 31 毫秒
91.
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers.  相似文献   
92.
93.
94.
95.
Varghese  A. Johnny  Ronald  B. Anand 《SILICON》2021,13(5):1655-1661
Silicon - This current research dealing the effect of adding high stiffness carbon fibre along with E-glass fibre and addition of nano-silica particles as a toughening agent in epoxy resin. The...  相似文献   
96.
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.  相似文献   
97.
Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.  相似文献   
98.
Metal-matrix composites offer considerable promise to help automotive engineers meet the challenges of current and future demands for recyclable, fuel-efficient, safe, and low-emission vehicles. These materials can be engineered to match the design requirements of automotive power-train or chassis components. Technological and infrastructural barriers tend to limit the implementation of these materials, but it is believed these barriers can be overcome and that metal-matrix composites can be applied in high-volume vehicle production. Reducing these barriers will require much effort by engineers and scientists, managers and planners at automotive manufacturers, and their suppliers. The result will be the gradual introduction of metal-matrix composites in high-volume vehicle production to satisfy customer desires while meeting regulatory requirements and competitive pressures.  相似文献   
99.
The molecular orientation at the outer surface of injection–stretch–blow‐molded bottles made from poly(ethylene terephthalate) was characterized and quantified by means of front‐surface reflection infrared spectroscopy based on a method developed previously. Results were obtained for two different bottle shapes (cylindrical and rectangular) molded at different injection mold temperatures (16, 38, and 60°C). For the cylindrical bottles, the preferred molecular chain orientation was found to be in the axial direction, with the Hermans orientation function near 0.3 for all three mold temperatures. For the less symmetrical rectangular bottles, a significant difference was observed between the large and small faces. For the large face, the orientation was mainly in the hoop direction; the Hermans orientation function was in the range of 0.3–0.5 and was essentially the same at all mold temperatures and positions along the bottle height. For the small face, on the other hand, the preferred orientation changed from the hoop direction near the bottom to the axial direction near the top, and the variation was more pronounced at lower mold temperatures. The utility of the front‐surface reflection technique was clearly demonstrated. It was also applied, with the use of an infrared microscope, to examine the orientation gradient across the wall thickness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1319–1327, 2007  相似文献   
100.
Infrared spectroscopy was used to study the evolution of structure in films of polyamide‐6 drawn on a Cellier tenter frame laboratory tester under conditions of simultaneous equibiaxial stretching and planar uniaxial stretching. The “tilted film” method was used to obtain trichroic spectra corresponding to the machine, transverse, and normal directions, as well the “structural factor” spectrum. From these it was possible to obtain information on the molecular orientation and the evolution of the crystalline structure. The starting films, prepared by melt casting from an extruder on a chilled roll, contained predominantly the mesomorphic β form. The structural factor spectra confirmed that strain‐induced transformation into the α form occurred upon drawing, and that the amount of α form increased with the extent of drawing. The trichroic spectra showed that the molecular orientation was localized mainly, but not exclusively, in the α form. Orientation functions could be determined for both the molecular chain axis and the normal to the hydrogen‐bonded sheets. For both the equibiaxial and planar uniaxial films, these sheets were found to be strongly oriented parallel to the plane of the film, with the degree of orientation increasing with overall draw ratio. For the biaxial samples, the molecular chain orientation was found to be equibiaxial, as expected. Mechanical test results indicated that the chains are evenly distributed in the film plane rather than showing a preference for the two orthogonal draw directions. For the planar uniaxial samples, the chain orientation was predominantly in the draw direction, but some degree of orientation in the transverse direction was also observed. The variation of orientation functions with draw ratio suggested that the α structure evolves in two stages, the first involving chain orientation in the draw direction and the second involving rotation of the sheets into the plane of the film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号